Rust Crash
Course

Marcus Hughes

SWRI SST 27 April 2023

PDF available at

https://publish.obsidian.md/arbor/attachments/crash_course_in_rust_slides.pdf

https://publish.obsidian.md/arbor/attachments/crash_course_in_rust_slides.pdf

Ducks help with debugging!

Say hi to your new duck friend!

My Rust journey has just begun

e Re-implementing the core of TomograPy in
Rust using Rayon for parallel execution

e Made a simple tower defense game in Rust's
Bevy game engine

- Lo . .

W
@& @

I'm still a Rust noob.

Why learn Rust?

Rust is @ memory safe language.

Rust is fast.

RuUSt is concurrent.

RUSt IS expressive.

Rust is a modern language.

Rust can accelerate Python using PyO3 and
Maturin.

Why does Rust have the reputation of being a
difficult language to learn?

e Ownership and borrowing
e Lifetimes
e (Generics

Why is Rust among the most loved langauges?

Stack Overflow 2022 Survey

Why is Rust among the most loved langauges?

e Memory safety!

e |nstructive compiler

e Beautiful error handling

e An elegant and powerful type system

Free learning resources

The Rust Book

Rust By Example

Rustlings exercises

No Boilerplate YouTube
Code to the Moon YouTube

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/rust-by-example/index.html
https://github.com/rust-lang/rustlings/
https://www.youtube.com/@NoBoilerplate
https://www.youtube.com/@codetothemoon

Buckle up!

We're going to move quickly.

fn main() {
println!("Hello world!");

}

fn main() {
let age = 27;
println! ("Hello I am {}", age);

fn main() {
let x: 132 = -1;
if x == 42 {
println! ("You have found the answer.");
} else {
println! ("Oh no! Keep thinking.");
}

What if we forgot to initialize?
Rust helps!

error[E0381]: used binding x 1isn't initialized
--> exercises/variables/variables2.rs:6:8

5 let x: 132;
- binding declared here but left unuinitialized
6 if x == 10 {

D

X used here bhut it isn't initialized

5 let x: 132 = 0;

|
|
|
|
|
help: consider assigning a value
|
|
| +++

error: aborting due to previous error

fn main() {
let mut x = 3;
println! ("Number {}", x);

X = 5;
println! ("Number {}", x);

Challenge!

Only add symbols

fn main() {
let number = "T-H-R-E-E"; // don't change this line
println! ("Spell a Number : {}", number);

number = 3; // don't rename this variable
println! ("Number plus two is : {}", number + 2);

Solution: scoping

fn main() {
let number = "T-H-R-E-E"; // don't change this line
println! ("Spell a Number : {}", number);
{
let number = 3; // don't rename this variable
println! ("Number plus two is : {}", number + 2);

Functions

fn add two and print() {

let number = 3;

println! ("Number plus two is : {}", number + 2);
}
fn main() {

let number = "T-H-R-E-E";

println! ("Spell a Number : {}", number);

add two and print();

Loopy function with a parameter

fn main() {
call me(3);
}

fn call me(num: u32) ({
for i in 0..num {
println! ("Ring! Call number {}", i + 1);
}

Returning from a function

fn main() {
let number = 51;
println! ("Even? {}", is_ even(number));

}

fn is even(num: i32) -> bool {

num % 2 ==

}

Challenge: write favorite number

#[cfg(test)]
mod tests {
use super::*;
#[test]
fn marcus favorite() {
assert eq! (favorite number("marcus"), 42)

}
#[test]

fn enrico favorite() {
assert eq! (favorite number("enrico"), 1)

}
#[test]
fn other favorite() {

assert eq! (favorite number("anyone else"), 7)

}

Solution

pub fn favorite number(name: &str) -> 132 ({

if name == "marcus" {
42

} else if name == "enrico" {
1

} else {
7

}

Another way!

pub fn favorite number (name: &str) -> 132 {
match name {

"marcus" => 42,
"enrico" => 1,
=> 77

Welcome to structs!

struct Point {
xX: 132,
y: 132,

}

fn print point(point: Point) {
println! (" ({}, {})", point.x, point.y);
}

fn main() {
let p = Point {x: 3, y: 6};
print point(p);

Structs can have associated functions

struct Point {
xX: 132,
y: 132,

}

impl Point {
fn add(self, other: Point) -> Point {
Point {x: self.x + other.x, y: self.y + other.y}
}
}

fn main() {
let pl = Point {x: 3, y: 6};
let p2 = Point {x: -3, y: -6};
let origin = pl.add(p2);

Enumerated types allow you to define a variable
type that has set possible values.

enum Direction {

North,
South,
East,
West,

}

fn main() {

let direction = Direction: :North;

match direction {
Direction::North => println! ("Going north"),
Direction::South => println! ("Going south"),
Direction::East => println! ("Going east"),
Direction::West => println! ("Going west"),

If | forget a case, Rust will complain.

Rust's enums are more
complete than other
languages.

They can contain more information and have
methods.

#[derive (Debug)]

enum Message {
Move{x: 132, y: 132},
Echo(String),
ChangeColor(i32, i32, 132),
Quit

}

impl Message {
fn call(&self) {
println! ("{:2}", self);
}

fn main() {
let messages = |
Message::Move { x: 10, y: 30 },
Message: :Echo(String::from("hello world")),
Message: :ChangeColor (200, 255, 255),
Message: :Quit,

17

for message in &messages {
message.call();

This code fails!

struct Point {
xX: 132,
y: 132,

}

fn print point(point: Point) {
println! (" ({}, {})", point.x, point.y);
}

fn main() {
let p = Point {x: 3, y: 6};
print point(p);
print point(p); // Only added this line

error[bosazi: use of moved value: ;b‘
-=> src/main.rs:13:14

11 | let p = Point {x: 3, y: 6};
[- move occurs because “p° has type ‘Point’, which does not implement the “Copy’ trait

12 | print_point(p);
| - value moved here

13 | print_point(p); // I added this line only
I

~ value used here after move
I
note: consider changing this parameter type in function “print_point® to borrow instead if owning the value isn't necessary
—=> src/main.rs:6:23
|
6 | fn print_point(point: Point) {
| ——— Anasnn this parameter takes ownership of the value
I |
I

in this function

For more information about this error, try “rustc —explain E0382".
error: could not compile "rust_examples' due to previous error

Ownership 101

e "Ownership is a set of rules that govern how a
Rust program manages memory."

o |t'll take some getting used to so don't panic.
You have your duck friend (who is an expert)!

const person = {
id: 1,
name: 'John',
age: 25,

}

const dog = {

name: 'puppy’,
personld: 1,

}

{
name:‘puppy;
person: 1,

function getOwner(dog, persons) {
return persons.find({person) =>
person.id === dog.person getOwner

. H

const name = 'John’;

function getOwner(dog, person) {
return persons.find({person) =>
person.id === dog.person
)
}

const newPerson = person;

https://felixgerschau.com/javascript-memory-management/

https://felixgerschau.com/javascript-memory-management/

Stack Probes
(x86/x64)
C Libraries
(CFFI)

Unsafe API

Wrapper Checks
(ex: Interior Mut) Stack Memory
Safe Rust

App

Bound Checks
Rust

Libraries

Variables
Initialized G

Before Use

Only Valid
References Heap Memory :
Operating System

No Dangling
Pointers

Hardware
(Subject to Physical Attacks)

No Data Races

https://highassurance.rs/chp4/safe_rust_PLACEHOLDER.html

https://highassurance.rs/chp4/safe_rust_PLACEHOLDER.html

let sl
let s2

String::from("hello");
sl;

sl
ot |\
Clen | 5\,

s2
name [vaigd
“ow | 7

Left is stack, Right is Heap

Here are some examples of when a Rust
variable gets borrowed:

When a variable is passed to a function as a
reference.

When a variable is used as a key in a hash
map.

When a variable is used as an element in a
vector.

When a variable is used as a field in a struct.

Generally,
when a variable is used to access its data,

it is being borrowed.

References are one solution

& denotes a reference in Rust

For example:

let x
let y

1;
&x; // y is an immutable reference to X

References can be mutable

gmut is how you indicate that.

let x
let y

13
&mut x; // y is a mutable reference to x

Solution to our problem

struct Point {
xX: 132,
y: 132,

}

fn print point(point: &Point) {
println! (" ({}, {})", point.x, point.y);
}

fn main() {
let p = Point {x: 3, y: 6};
print point (&p);
print point(&p);

Be careful with mutability

fn main() {
let x = 1;
let vy = &mut x; // y is a mutable reference to x
let z = smut x; // error! y and z both own x

You can only have one mutable reference for a
variable at a time.

You can have as many immutable references for a
variable as you want!

Let's talk generics!

fn main() {
let mut prices: Vec<f32> = Vec::new();
prices.push(32.99);

// This function runs for any partially ordered type!
fn max<T: std::cmp::PartialOrd>(a: T, b: T) -> T {

if a > b {
a
} else {
o}
}
}
fn main() {
let x = 5;
let yv = 10;

println! ("The max is {}", max(x, y));

What is std: :cmp: :PartialOrd?
It's a "trait" or a contract for how a type behaves.

trait Printable {
fn print(&self);
}

impl Printable for String {
fn print(&self) {
println! ("{}", self);
}
}

fn main() {
let s = String::from("Hello, world!");
s.print();

This code fails! Why?

fn longest(x: &str, y: &str) -> &str {
if x.len() > y.len() {
X
} else {

y
b
h

fn main() {
let stringl = String::from("abcd");

let string2 = "xyz";

let result = longest(stringl.as str(), string2);
println! ("The longest string is '{}'", result);

It needs to know how long the reference persists.

error[éalesi: mis;ing iifetime speéifier T - -
--> src/main.rs:1:33
I
1 | fn longest(x: &str, y: &str) —> &str {
| —_— — ~ expected named lifetime parameter

I

= help: this function's return type contains a borrowed value, but the signature does not say whether it is borrowed from “x* or ‘y°
help: consider introducing a named lifetime parameter

I

I

I

1 | fn longest<'a>(x: &'a str, y: &'a str) — &'a str {

++++ ++ ++ ++

For more information about this error, try " rustc ——explain E0106° .

Solution

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
if x.len() > y.len() {
X
} else {
y

}
}

fn main() {
let stringl = String::from("abcd");
let string2 = "xyz";

let result = longest(stringl.as str(), string2);
println! ("The longest string is '{}'", result);

This code fails! How do you fix it?

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
if x.len() > y.len() { x } else { vy }
}

fn main() {
let stringl = String::from("xyz");
let result;
{
let string2 = String::from("long string is long");
result = longest(stringl.as str(), string2.as str());

}

println! ("The longest string is '{}'", result);

Look at the error

error[E@597]: “string2’ does not live long enough
-=> src/main.rs:14:44

14 | result = longest(stringl.as_str(), string2.as_str());

| Anananannnnnnsns borrowed value does not live long enough
15 | }

| - “string2” dropped here while still borrowed
16 | println!("The longest string is '{}'", result);

T borrow later used here

For more information about this error, try " rustc ——explain E@597 .
error: could not compile 'rust_examples® due to previous error

Solution

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
if x.len() > y.len() { x } else { vy }

}

fn main() {
let stringl = String::from("xyz");
let result;
let string2 = String::from("long string is long");
result = longest(stringl.as str(), string2.as str());
println! ("The longest string is '{}'", result);

Iterators are a key Rust concept.

fn main() {
let my numbers = vec![1l, 2, 3, 4, 6];
let is _even: Vec<bool> = my numbers.iter()
.map(|x| x & 2 == 0)
.collect();

fn main() {
let words = vec!["we", "the", "people"];

let reformatted: Vec<String> = words.iter()
.map(|&s| capitalize first(s))

.collect();

for word in reformatted {
println! ("{}", word);

}

pub fn capitalize first(input: &str) -> String {
let mut ¢ = input.chars();
match c.next() {
None => String::new(),
Some(first) =>
first.to string().to uppercase() + c.as str(),

Strings are a little weird in Rust

There are two types of strings in Rust:

e &str is a reference to a string slice. A string
slice is a view into a string, and it does not own
the underlying data.

e String is a heap-allocated string. A String owns
the underlying data, and it can grow and shrink
as needed.

Congratulations!

You've taken your first steps in mastering Rust.

