
Rust Crash
Course

Marcus Hughes

SwRI SST 27 April 2023

PDF available at

https://publish.obsidian.md/arbor/attachments/crash_course_in_rust_slides.pdf

https://publish.obsidian.md/arbor/attachments/crash_course_in_rust_slides.pdf

Ducks help with debugging!

Say hi to your new duck friend!

My Rust journey has just begun

Re-implementing the core of TomograPy in

Rust using Rayon for parallel execution

Made a simple tower defense game in Rust's

Bevy game engine

I'm still a Rust noob.

Why learn Rust?

Rust is a memory safe language.

Rust is fast.

Rust is concurrent.

Rust is expressive.

Rust is a modern language.

Rust can accelerate Python using PyO3 and

Maturin.

Why does Rust have the reputation of being a
difficult language to learn?

Ownership and borrowing

Lifetimes

Generics

Why is Rust among the most loved langauges?

Stack Overflow 2022 Survey

Why is Rust among the most loved langauges?

Memory safety!

Instructive compiler

Beautiful error handling

An elegant and powerful type system

Free learning resources

The Rust Book

Rust By Example

Rustlings exercises

No Boilerplate YouTube

Code to the Moon YouTube

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/rust-by-example/index.html
https://github.com/rust-lang/rustlings/
https://www.youtube.com/@NoBoilerplate
https://www.youtube.com/@codetothemoon

Buckle up!
We're going to move quickly.

fn main() {
 println!("Hello world!");
}

fn main() {
 let age = 27;
 println!("Hello I am {}", age);
}

fn main() {
 let x: i32 = -1;
 if x == 42 {
 println!("You have found the answer.");
 } else {
 println!("Oh no! Keep thinking.");
 }
}

What if we forgot to initialize?
Rust helps!

fn main() {
 let mut x = 3;
 println!("Number {}", x);

 x = 5;
 println!("Number {}", x);
}

Challenge!

Only add symbols

fn main() {
 let number = "T-H-R-E-E"; // don't change this line
 println!("Spell a Number : {}", number);

 number = 3; // don't rename this variable
 println!("Number plus two is : {}", number + 2);

}

Solution: scoping

fn main() {
 let number = "T-H-R-E-E"; // don't change this line
 println!("Spell a Number : {}", number);
 {
 let number = 3; // don't rename this variable
 println!("Number plus two is : {}", number + 2);
 }
}

Functions

fn add_two_and_print() {
 let number = 3;
 println!("Number plus two is : {}", number + 2);
}

fn main() {
 let number = "T-H-R-E-E";
 println!("Spell a Number : {}", number);
 add_two_and_print();
}

Loopy function with a parameter

fn main() {
 call_me(3);
}

fn call_me(num: u32) {
 for i in 0..num {
 println!("Ring! Call number {}", i + 1);
 }
}

Returning from a function

fn main() {
 let number = 51;
 println!("Even? {}", is_even(number));
}

fn is_even(num: i32) -> bool {
 num % 2 == 0
}

Challenge: write favorite_number

#[cfg(test)]
mod tests {
 use super::*;
 #[test]
 fn marcus_favorite() {
 assert_eq!(favorite_number("marcus"), 42)
 }
 #[test]
 fn enrico_favorite() {
 assert_eq!(favorite_number("enrico"), 1)
 }
 #[test]
 fn other_favorite() {
 assert_eq!(favorite_number("anyone else"), 7)
 }
}

Solution

pub fn favorite_number(name: &str) -> i32 {
 if name == "marcus" {
 42
 } else if name == "enrico" {
 1
 } else {
 7
 }
}

Another way!

pub fn favorite_number(name: &str) -> i32 {
 match name {
 "marcus" => 42,
 "enrico" => 1,
 _ => 7
 }
}

Welcome to structs!

struct Point {
 x: i32,
 y: i32,
}

fn print_point(point: Point) {
 println!("({}, {})", point.x, point.y);
}

fn main() {
 let p = Point {x: 3, y: 6};
 print_point(p);
}

Structs can have associated functions

struct Point {
 x: i32,
 y: i32,
}

impl Point {
 fn add(self, other: Point) -> Point {
 Point {x: self.x + other.x, y: self.y + other.y}
 }
}

fn main() {
 let p1 = Point {x: 3, y: 6};
 let p2 = Point {x: -3, y: -6};
 let origin = p1.add(p2);
}

Enumerated types allow you to define a variable

type that has set possible values.

If I forget a case, Rust will complain.

enum Direction {
 North,
 South,
 East,
 West,
}

fn main() {
 let direction = Direction::North;

 match direction {
 Direction::North => println!("Going north"),
 Direction::South => println!("Going south"),
 Direction::East => println!("Going east"),
 Direction::West => println!("Going west"),
 }

Rust's enums are more
complete than other

languages.
They can contain more information and have

methods.

#[derive(Debug)]
enum Message {
 Move{x: i32, y: i32},
 Echo(String),
 ChangeColor(i32, i32, i32),
 Quit
}

impl Message {
 fn call(&self) {
 println!("{:?}", self);
 }
}

fn main() {
 let messages = [
 Message::Move { x: 10, y: 30 },
 Message::Echo(String::from("hello world")),
 Message::ChangeColor(200, 255, 255),
 Message::Quit,
];

 for message in &messages {
 message.call();
 }
}

This code fails!

struct Point {
 x: i32,
 y: i32,
}

fn print_point(point: Point) {
 println!("({}, {})", point.x, point.y);
}

fn main() {
 let p = Point {x: 3, y: 6};
 print_point(p);
 print_point(p); // Only added this line
}

Ownership 101

"Ownership is a set of rules that govern how a

Rust program manages memory."

It'll take some getting used to so don't panic.

You have your duck friend (who is an expert)!

https://felixgerschau.com/javascript-memory-management/

https://felixgerschau.com/javascript-memory-management/

Heap Memory

Stack Memory

Notional Memory LayoutRuntime Memory Safety

Compile-time Memory Safety

Bound Checks

Unsafe API
Wrapper Checks
(ex: Interior Mut)

No Dangling
Pointers

No Data Races

Only Valid
References

Variables
Initialized
Before Use

Text

Initialized Data

Uninitialized Data (BSS)

Arguments, Environment Variables

Stack Probes
(x86/x64)

Kernelspace

Notional Rust Application

Hardware
(Subject to Physical Attacks)

Operating System

Safe Rust
App

C Libraries
(CFFI)

Rust
Libraries

Unsafe
Rust

https://highassurance.rs/chp4/safe_rust_PLACEHOLDER.html

https://highassurance.rs/chp4/safe_rust_PLACEHOLDER.html

Left is stack, Right is Heap

let s1 = String::from("hello");
let s2 = s1;

Here are some examples of when a Rust
variable gets borrowed:

When a variable is passed to a function as a

reference.

When a variable is used as a key in a hash

map.

When a variable is used as an element in a

vector.

When a variable is used as a field in a struct.

Generally,

when a variable is used to access its data,

it is being borrowed.

References are one solution

& denotes a reference in Rust

For example:

let x = 1;
let y = &x; // y is an immutable reference to x

References can be mutable

&mut is how you indicate that.

let x = 1;
let y = &mut x; // y is a mutable reference to x

Solution to our problem

struct Point {
 x: i32,
 y: i32,
}

fn print_point(point: &Point) {
 println!("({}, {})", point.x, point.y);
}

fn main() {
 let p = Point {x: 3, y: 6};
 print_point(&p);
 print_point(&p);
}

Be careful with mutability

fn main() {
 let x = 1;
 let y = &mut x; // y is a mutable reference to x
 let z = &mut x; // error! y and z both own x
}

You can only have one mutable reference for a

variable at a time.

You can have as many immutable references for a

variable as you want!

Let's talk generics!

fn main() {
 let mut prices: Vec<f32> = Vec::new();
 prices.push(32.99);
}

// This function runs for any partially ordered type!
fn max<T: std::cmp::PartialOrd>(a: T, b: T) -> T {
 if a > b {
 a
 } else {
 b
 }
}

fn main() {
 let x = 5;
 let y = 10;
 println!("The max is {}", max(x, y));
}

What is std::cmp::PartialOrd?

It's a "trait" or a contract for how a type behaves.

trait Printable {
 fn print(&self);
}

impl Printable for String {
 fn print(&self) {
 println!("{}", self);
 }
}

fn main() {
 let s = String::from("Hello, world!");
 s.print();
}

This code fails! Why?

fn longest(x: &str, y: &str) -> &str {
 if x.len() > y.len() {
 x
 } else {
 y
 }
}

fn main() {
 let string1 = String::from("abcd");
 let string2 = "xyz";

 let result = longest(string1.as_str(), string2);
 println!("The longest string is '{}'", result);
}

It needs to know how long the reference persists.

Solution

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
 if x.len() > y.len() {
 x
 } else {
 y
 }
}

fn main() {
 let string1 = String::from("abcd");
 let string2 = "xyz";

 let result = longest(string1.as_str(), string2);
 println!("The longest string is '{}'", result);
}

This code fails! How do you fix it?

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
 if x.len() > y.len() { x } else { y }
}

fn main() {
 let string1 = String::from("xyz");
 let result;
 {
 let string2 = String::from("long string is long");
 result = longest(string1.as_str(), string2.as_str());
 }
 println!("The longest string is '{}'", result);
}

Look at the error

Solution

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
 if x.len() > y.len() { x } else { y }
}

fn main() {
 let string1 = String::from("xyz");
 let result;
 let string2 = String::from("long string is long");
 result = longest(string1.as_str(), string2.as_str());
 println!("The longest string is '{}'", result);
}

Iterators are a key Rust concept.

fn main() {
 let my_numbers = vec![1, 2, 3, 4, 6];
 let is_even: Vec<bool> = my_numbers.iter()
 .map(|x| x % 2 == 0)
 .collect();
}

fn main() {
 let words = vec!["we", "the", "people"];

 let reformatted: Vec<String> = words.iter()
 .map(|&s| capitalize_first(s))
 .collect();

 for word in reformatted {
 println!("{}", word);
 }
}

pub fn capitalize_first(input: &str) -> String {
 let mut c = input.chars();
 match c.next() {
 None => String::new(),
 Some(first) =>
 first.to_string().to_uppercase() + c.as_str(),
 }
}

Strings are a little weird in Rust

There are two types of strings in Rust:

&str is a reference to a string slice. A string

slice is a view into a string, and it does not own

the underlying data.

String is a heap-allocated string. A String owns

the underlying data, and it can grow and shrink

as needed.

Congratulations!
You've taken your first steps in mastering Rust.

